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Abstract 
 
 

The skewness and kurtosis of daily sea surface temperature (SST) variations are found to 

be strongly linked at most locations around the globe in a new high-resolution 

observational dataset, and are analyzed in terms of a simple stochastically forced mixed-

layer ocean model. The predictions of the analytic theory are in remarkably good 

agreement with observations, strongly suggesting that a univariate linear model of daily 

SST variations with a mixture of SST-independent (additive) and SST-dependent 

(multiplicative) noise forcing is sufficient to account for the skewness-kurtosis link. Such 

a model of non-Gaussian SST dynamics should be useful in predicting the likelihood of 

extreme events in climate, as many important weather and climate phenomena, such as 

hurricanes, ENSO, and the NAO depend on a detailed knowledge of the underlying local 

SSTs. 
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1. Introduction 
 
The atmosphere-ocean system exhibits natural variability on time scales ranging from 

minutes to millennia. Given the larger density and heat capacity of the ocean, the  system 

can be thought of as a slowly varying system, the ocean, coupled to a rapidly varying 

system, the atmosphere. This time scale separation has been extensively used to study 

atmosphere-ocean interactions. The most general formulation of this idea, stochastic 

climate models, was introduced by Hasselmann (1976) and is based on a Brownian 

motion analog: the observed red spectrum of oceanic fluctuations is a consequence of the 

amplification of the low-frequency part of rapidly decorrelating stochastic weather 

fluctuations. The formal derivation of this fast-slow time scale interaction is 

straightforward. For example, the heat budget equation for sea surface temperature T
o
, 

defined as an average over the mixed-layer depth h (see, e.g., Frankignoul 1985) is: 
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where the rate of change of T
o
is governed by advection through ocean currents (A), 

surface heat fluxes (B), vertical entrainment (C), and horizontal mixing (D). Herev
o
is the 

horizontal velocity in the mixed-layer, Q is the heat flux through the sea surface, ρ and C 

are the density and heat capacity of sea water, w
e
and T

o

b are the vertical velocity and 

temperature just below the mixed-layer, and κ is the horizontal mixing coefficient. F 

denotes the sum of all terms. Note that all of these terms are directly or indirectly affected 
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by atmospheric quantities like winds and temperatures. For small temperature anomalies 

!T
o

 a Taylor expansion of the heat flux F with respect to T
o
= T

o
+ !T

o
 yields 

                                                             ! "T
o

!t
=

!F

!T
o

"T
o
+ "F   ,                                             (2)   

where it is assumed that the evolution of the mean SST T
o

 is balanced by the mean heat 

flux F . Because the heat flux anomaly !F  is to a large degree due to rapid atmospheric 

fluctuations, it may be represented as noise η. The derivative !F !T
o

, on the other hand, 

is usually represented by a constant parameter –λ. That is, the effect of atmospheric 

forcing on sea surface temperature (SST) anomalies 

� 

! T 
o
 is often represented by a simple 

stochastic driving of the oceanic mixed-layer,  

                                                                ! "T
o

!t
= #$ "T

o
+%                                                  (3)          

(Hasselmann 1976; Frankignoul and Hasselmann 1977, hereafter FH77), where λ is a rate 

coefficient representing the transfer of heat from the slowly evolving mixed-layer heat 

anomaly, and η is Gaussian white-noise representing the heat fluxes due to rapidly 

varying weather fluctuations. The e-folding time scale of SST variability is thus τ = 1/λ. 

Such a simple univariate linear system has been surprisingly successful in explaining 

many features of midlatitude SST variability (e.g., Frankignoul and Hasselmann 1977; 

Reynolds 1978; Hall and Manabe 1997, and many others).  

The classical stochastic view in (3) implies that !T
o

 has a Gaussian probability 

density function (PDF). Indeed, temporally (e.g., monthly, seasonally, or even yearly) or 

spatially (e.g., several degrees) averaged SST anomalies are nearly Gaussian. We expect 



 4 

this partly from the Central Limit Theorem (e.g., Gardiner 2004; Paul and Baschnagel 

1999) to the extent that it is applicable to time-averaged quantities. On daily scales, 

however, observations from Ocean Weather Stations (OWS) show that the PDFs of SST 

are significantly non-Gaussian (Sura et al. 2006). So far (to our knowledge), no 

systematic attempt has been made to globally map and discuss the non-Gaussian features 

of daily SST anomalies. 

One reason for interest in the non-Gaussianity of rapidly sampled SST anomalies 

is that the analysis of deviations from Gaussianity, or anomalous statistics, can shed light 

on the basic mechanisms of SST variability [and of other physical processes; see, e.g., 

Peinke et al. (2004) or Sura et al. (2005) for a more general discussion]. Sura et al. (2006) 

analyzed the non-Gaussianity at several OWS and found it to be consistent with a 

univariate multiplicative noise model that also considers stochastic fluctuations in the 

relaxation coefficient λ in (3). The classical FH77 hypothesis assumes that λ is a 

constant. It has been shown (Sura et al. 2006; Blaauboer et al. 1982; Müller 1987), 

however, that rapid fluctuations in λ, as expected from the gustiness of sea surface winds, 

cannot be ignored. If we replace λ in (3) with ! = ! + "! , where !  is constant and !"  is 

white-noise, then !" !T
0

 is a noise term whose amplitude depends linearly on the 

amplitude of the SST anomaly !T
0

, and is thus a linear “multiplicative” noise term.   

In this paper we use a multiplicative noise model, derived directly from the basic 

mixed-layer Eq. (1), to explain a remarkable global property of non-Gaussian SST 

variability found in a daily sampled SST dataset, namely that the skewness and kurtosis 

of the daily SST variations are closely linked at most locations around the globe. Our 

principal interest here is in a global characterization of non-Gaussian SST variability, and 
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not in the detailed SST anomaly budget at specific locations [as has been done in many 

papers, including Sura et al. (2006)]. We are approaching the problem of SST variability 

more in the light of statistical mechanics. In other words, we want to understand an 

observed global constraint on non-Gaussian SST variability by looking at a large 

ensemble of related local quantities.  

The results from the SST dataset are presented in section 2. In section 3 we 

present a simple theory of the mixed-layer dynamics (1) that links the skewness and 

kurtosis of the SST variations. Its relevance to observations is discussed in section 4. 

Finally, section 5 provides a summary and discussion. 

 

2. Observations 

As already mentioned in the introduction, PDFs are useful diagnostic measures of the 

dynamics of stochastic systems. In particular, deviations from Gaussianity can shed light 

on the underlying dynamics (e.g., Peinke et al. 2004; Sura et al. 2005; Sura et al. 2006; 

Sura and Newman 2007). Here, we analyze the higher moments (skewness and kurtosis) 

of daily SST anomalies. We first present global maps of skewness and kurtosis, and then 

investigate the remarkable link between these higher moments as revealed on a scatter 

plot. 

 

a. Data 

Recently, NOAA produced a blended analysis of daily SST fields based on infrared 

satellite data from the Advanced Very High Resolution Radiometer (AVHRR) and in situ 

data from ships and buoys (Reynolds et al. 2007). The analysis was performed using 
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optimum interpolation with a separate step to correct satellite biases relative to the in situ 

data. The in situ data were obtained from the International Comprehensive Ocean-

Atmosphere Data Set (ICOADS; http://icoads.noaa.gov/). This NOAA daily SST analysis 

is available on a 0.25-degree latitude/longitude grid from January 1985 to the present. A 

more detailed description of the dataset and analysis procedure can be found in Reynolds 

et al. (2007). SST anomalies were calculated by subtracting the daily climatology and 

linear trend from the full daily values. We then analyzed the extended summer (May-

October) and extended winter (November-April) seasons.       

 

b. Higher moments: skewness and kurtosis 

As we cannot accurately estimate the full PDF at every grid-point, we use skewness 

(third moment) and kurtosis (fourth moment) to characterize the overall shape of the 

PDF. If the standard deviation of SST anomalies !T
o

 is denoted by σ, the skewness (skew) 

and kurtosis (kurt) become 

                                            skew !
"T
o

   3

#
 3
,           kurt !

"T
o

   4

#
 4

$ 3.                                         (4) 

Skewness is a measure of asymmetry of a PDF. If the left tail is heavier (more 

pronounced) than the right tail, the PDF has negative skewness. If the reverse is true, it 

has positive skewness. If the PDF is symmetric, it has zero skewness. Kurtosis (or more 

accurately, “excess kurtosis”, since we subtract the kurtosis of 3 for a Gaussian 

distribution) measures the excess probability (fatness) in the tails, where excess is defined 

in relation to a Gaussian distribution. The standard errors σskew/kurt of skewness and 

kurtosis are approximately !
skew

= 6 / N
in

 and !
kurt

= 24 / N
in

 respectively, where Nin 
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is the effective number of independent observations. We remember that ± one standard 

error corresponds to approximately the 68% confidence interval, and ± two standard 

errors to the 95% confidence interval. To obtain a globally typical estimate of Nin , we 

note that since we use 21 years of data, the total number of observations N at each grid 

point in each extended season is about 3800. If we now make the reasonable assumption 

that SST anomalies have a decorrelation time scale of about a month, we get 

!
skew

" 0.2 and !
kurt

" 0.4 . This is a conservative estimate, because it ignores the spatial 

coherence of the moments. That is, if we see large coherent regions in the geographical 

maps of the moments, we may “trust” them even if they do not satisfy local significance  

criteria. Therefore, we will in the following show the full global maps of SST anomaly 

moments (skewness and kurtosis) equatorward of 65° North and South (to avoid regions 

with sea ice) before turning our attention to the standard errors again in a scatter plot of 

skewness versus kurtosis.    

The skewness of SST anomalies in the extended summer (upper panel) and winter 

(lower panel) seasons is shown in Fig. 1. It shows a rich structure in both seasons, whose 

detailed investigation is beyond the scope of this paper. It is, nonetheless, worth 

mentioning that the skewness (in both seasons) in this gridded dataset matches that of 

independent SST observations at colocated Ocean Weather Stations (Sura et al. 2006). By 

independent we mean that in situ Ocean Weather Station (OWS) data are not blended into 

this gridded dataset (starting 1985), because almost all OWS were unfortunately 

abandoned by 1982 [see Dinsmore (1996) for a brief history of Ocean Weather Stations].  
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In particular the positive in situ skewness at OWS1 P, N, K, and the negative one at 

OWS1 V match the skewness at nearby gridpoints in this dataset [see Sura et al. (2006) 

for a detailed discussion of the PDFs at several OWS]. Therefore, we are confident that 

the moments in this SST dataset are reliable and not an artifact of the satellite retrieval or 

optimal interpolation procedures. 

 The kurtosis of SST anomalies in the extended northern summer (upper panel) 

and winter (lower panel) seasons is shown in Fig. 2. Again, without discussing the maps 

in detail, we observe a rich structure in both seasons.  

Now the reader may ask, rightfully, what the value of Figs. 1 and 2 actually is, if 

we do not discuss the structures in detail (at least not in this paper). The global value 

becomes obvious as soon as we plot the kurtosis as function of skewness, as done in Fig. 

3. As already mentioned, we are interested in a global view of non-Gaussian SST 

variability. That is, we are not interested here in the detailed dynamics at a given point, 

but in global constraints induced by local dynamics. In a way we are applying the ideas 

of statistical mechanics to SST variability: We are looking to relate the local 

(“microscopic”) properties of SST variability to global (“macroscopic”) properties of the 

upper ocean temperature. In the context of non-Gaussian SST variability, what kind of 

property may be useful to link local dynamics to a global constraint? As we will see and 

discuss in the remainder of this paper, the functional relationship between skewness and 

kurtosis gives us an excellent tool to explore a link between local and global dynamics.  

Fig. 3 shows a scatter plot of kurtosis as a function of skewness for all data points 

equatorward of 65° North and South. Here we have not made any distinction between 

                                                
1 OWS P: 50°N, 145°W; OWS N: 30°N, 140°W; OWS K: 45°N, 16°W; OWS V: 34°N, 
164°W.  
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extended summer and winter, but plotted all available points; there are about 1.l million 

data points in the scatter plot. The estimated local 95% confidence intervals on the values 

are indicated in the upper right corner of the figure.  

The solid line in Fig. 3 shows a lower parabolic bound on kurtosis in our 

dataset: kurt ! 3
2

   skew
2 . Remarkably, almost without exception, all of the data points lie 

above this parabola. This is evidently a very strong constraint on the non-Gaussian 

character of the SST variability. Note that this is a stronger lower bound than the more  

general statistical bound valid in any system: kurt ! skew2
" 2 (e.g.,Wilkins 1944). At 

this point, to our knowledge, there is no obvious dynamical reason why SST variability 

should behave this way. Therefore, we ask the obvious question. Can we explain the 

observed global (“macroscopic”) constraint on the non-Gaussianity of SST variability by 

local (“microscopic”) dynamics? Posed differently, can we learn something fundamental 

about local SST variability by examining and explaining the observed global constraint?  

As it turns out in the remaining sections, we definitely can. 

 

3. Theory 

In the previous section we showed that daily SST anomalies obey a non-Gaussian 

distribution. In particular, we showed that there is a striking parabolic functional 

relationship between skewness and kurtosis. We next present a theory that explains this 

remarkable feature of observed SST anomalies. 

 

a. Basic equations 
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The starting point for our theory is the mixed-layer equation (1). We already noticed [Eq. 

(2)] that for small temperature anomalies !T
o

 a Taylor expansion of the heat flux with 

respect to T
o
= T

o
+ !T

o
 yields 

                                                  ! "T
o

!t
=

!F

!T
o

"T
o
+
! "F

!T
o

"T
o
+ "F + "R .                                     (5)   

Here, in contrast to Eq. (2), we just replaced the full heat flux F with its constituents 

F + !F  and added a residual term !R to represent all the processes not included in our 

mixed-layer equation (1). This, at first glance, trivial replacement is done to highlight the 

fact that the derivative !F !T
o

 actually consists of two terms: the constant term 

!F !T
o

and the rapidly varying term ! "F !T
o

. The constant term justifies the 

introduction of the constant feedback parameter –λ (as in FH77).  However, as described 

in Sura et al. (2006), the rapidly varying term cannot be neglected as done in many 

studies (e.g., in FH77). If we now implement the same approximations made to replace 

!F !T
o

with –λ, namely that F = F + !F  is a linear function of T
o
 (see, e.g., FH77 and 

Sura et al. 2006), in both the constant and the rapidly varying derivative we get the 

following equation for SST anomalies: 

                                            
! "T

o

!t
= #$ "T

o
#% "F "T

o
+ "F + "R + % "F "T ,                                (6)  

with the locally constant parameters −λ and −φ, and the rapidly varying forcing terms !F  

and !R . If we now assume that the rapidly varying terms !F and !R  can be approximated 

as independent, zero mean Gaussian white-noise processes with amplitudes !
"F
 and !

"R
, 

!F (t) !F ( !t ) = ("
!F
)
2
# (t $ !t ),      !R (t) !R ( !t ) = ("

!R
)
2
# (t $ !t ) , (6) becomes a stochastic 

differential equation (SDE) for SST anomalies !T
o

. Note that (6) is an SDE with state-
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dependent (multiplicative) noise because the noise !F  is multiplied by the SST anomaly 

!T
o

 and, therefore, depends on the state of the system !T
o

 [for a detailed discussion of 

SDEs see for example Gardiner (2004), Horsthemke and Léfèver (1984), Kloeden and 

Platen (1992), or any other textbook on SDEs]. For our purpose, the only important detail 

to recognize is that the SDE (6) has to be interpreted in the Stratonovich sense. In the 

Stratonovich calculus the deterministic drift term −λ has to be replaced by the effective 

drift !"eff # !" + 1
2

     $% &F( )
2 , which is the sum of the deterministic drift and the noise-

induced drift. The noise-induced drift appears in Stratonovich systems because then the 

time mean of the multiplicative noise term, here !" #F #T
o

, is not zero. This is also why 

one needs to introduce an additional mean forcing ! "F "T
o

 in (6) to ensure that the time 

mean of !T
0

 is zero. This is a simple stochastic renormalization procedure, which does 

not impact the dynamics of SST variability. Without going into details, we note that 

Stratonnovich calculus is applicable in continuous physical systems such as the ocean and 

atmosphere in which rapidly fluctuating quantities with small but finite correlation times 

are approximated as white-noise. Readers interested in more details should consult one of 

the available textbooks (see above). The remainder of this paper is generally 

understandable without a detailed knowledge of SDEs.    

The multiplicative noise system (6) has one important property of interest here. In 

general, the SDE (6) will produce non-Gaussian statistics. Indeed, a version of Eq. (6) has 

been already used in Sura et al. (2006) to model observed non-Gaussian SST anomalies 

at several OWS locations. That was, however, a local endeavor focusing on detailed local 

dynamics. The goal of this paper is to explore if (6) is globally relevant, neglecting 
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detailed local conditions as much as possible. Because we looked at the functional form 

of kurtosis versus skewness in Fig. 3, the next step is to calculate skewness and kurtosis 

from the SDE (6). 

 

b. Equation for the moments: skewness and kurtosis 

The Fokker-Planck equation (e.g., Gardiner 2004; Horsthemke and Léfèver 1984) for the 

stationary PDF p of SST anomalies !T
0
" x  governed by (6) may be written  

                     0 =
d

dx
!eff xp"# $% +

1

2

d
2

dx
2

& 'F
2
+& 'R

2
+ ( 2& 'F

2
x
2 ) 2(& 'F

2
x( ) p"# $% .                 (7) 

Expressions for the moments < xn >  of may be obtained from (7) by multiplying by 

powers of  x  and integrating by parts. This yields < x >  =  0  for the first moment (n = 

1), and the following expression for the higher moments (n > 2):            

  !
eff
"
n " 1

2
#$ %F( )

2&
'(

)
*+
< x

n
> = " (n " 1) #  $ %F

2
< x

n"1
>  +  

n " 1

2
 $ %F

2
+ $ %R

2( ) < xn"2
>  .  (8) 

In particular, the second, third and fourth moments are 

< x
2
>   =   ! "F

2
+! "R

2( ) / 2#eff $ %! "F( )
2&

'
(
),

< x
3
>   =   $ 2%! "F

2
< x

2
> / #eff $ %! "F( )

2&
'

(
),

< x
4
>   =   $3%! "F

2
< x

3
> +(3 / 2) ! "F

2
+! "R

2( ) < x2
>&' () / #eff $ (3 / 2) %! "F( )

2&
'

(
)  .

       (9)  

Now we divide the equation for < x4 >  by < x2 >2! "
4  and use the definitions of 

skewness and kurtosis in (4) to obtain 

                   kurt + 3 =
1

!eff " 32 #$ %F( )
2( )

"3#$ %F
2
skew

< x
2
>
1/2

+
3

2

$ %F
2
+$ %R

2( )
< x

2
>

&

'
(
(

)

*
+
+

  .              (10)    
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If we now replace !3"# $F

2
skew < x

2
>
1/2  with 3

2
!eff " #$ %F( )

2( )skew2  (using the 

expression for < x
3
> ) and !

"F

2
+!

"R

2( ) < x
2
>  with 2!eff " #$ %F( )

2( )  (using the 

expression for < x2 > ) we obtain our final equation  

      kurt + 3 =
3
2

!"eff + 32 #$ %F( )
2( )

!"eff + #$ %F( )
2( )skew2 ! 2"eff ! #$ %F( )

2( )&
'

(
)

.          (11) 

 
 

We already see, without discussing (11) in detail (that is done in the next section), 

that the kurtosis is a function of the skewness squared. Thus, just at first glance, we 

notice a structure that might explain the parabolic constraint in Fig. 3.  

         

4. Theory versus observations 

Having derived Eq. (11) for the kurtosis as a function of the skewness we now move on 

to explore in detail if (11) is able to explain the structure shown in Fig. 3. To ease the 

following discussion, we use the following nomenclature for (11): kurt = A   skew
2

+ B , 

with the factor A,  

                                                    A =

3
2
!"eff + #$ %F( )

2( )
!"eff +

3
2
#$ %F( )

2( )
  ,                                          (12)                                                                   

and the vertical offset B, 

                         B =
3 !"eff +

1
2
#$ %F( )

2( )
!"eff +

3
2
#$ %F( )

2( )
! 3  .                                      (13) 
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Let us first discuss the factor A. The first observational fact to notice is that the strength 

of the multiplicative noise !" #F( )
2  is usually relatively weak compared to !eff (Sura et al. 

2006), so that the multiplicative noise contribution to the drift can be neglected in a first-

order approximation: !"eff + #$ %F( )
2

& !"eff + 3
2

    #$ %F( )
2

& !" . Therefore, A ! 3
2

 for 

weak multiplicative noise. At this point it is important to recognize that this weak-

multiplicative-noise approximation is not equivalent to having no multiplicative noise at 

all. For no multiplicative noise skew = 0, and kurt = A   skew
2

+ B  collapses to kurt = 0 . 

We also notice that this weak-multiplicative-noise approximation provides us with a 

lower-limit of A, because !"eff + #$ %F( )
2( ) !"eff + 3

2
   #$ %F( )

2( ) & 1 . Note that, for the 

fourth moment to exist [see (9)], there is an upper limit for he strength of the 

multiplicative noise: !" #F( )
2

< 2
3( )$eff   . Thus, in general A ! 3

2
. This gives us exactly 

the shape of the limiting parabola shown in Fig. 3, kurt = 3
2

   skew
2 .  Therefore, let us 

now discuss the vertical offset B.  

Let us study what the weak-multiplicative-noise approximation yields for B. That 

is, we again neglect the multiplicative noise contribution to the drift, resulting in a 

cancellation of !"eff # !" . As discussed before, this weak noise approximation provides 

us with a lower limit of B, because !"eff + 1
2
#$ %F( )

2( ) !"eff + 3
2

   #$ %F( )
2( ) & 1 . Again, 

note that there exists an upper limit, !" #F( )
2

< 2
3( )$eff   , for the strength of the 

multiplicative noise. Therefore, in general B ! 0 .  
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To summarize, having established the lower limits of A and B, we conclude that 

our SDE (6) results in kurt ! 3
2

   skew
2 , in almost perfect agreement with observations. 

Therefore, we conclude that the SDE (6) captures the overall dynamics of global SST 

variability remarkably well. In particular, we come to the conclusion that the observed 

non-Gaussianity of SST anomalies is due to multiplicative noise rather than to 

nonlinearities in the deterministic part of the SST equation [as often assumed, e.g., 

Burgers and Stephenson (1999)].   

 

5. Summary and conclusions 

In this paper we used a multiplicative noise model, directly derived from basic mixed-

layer dynamics, to explain a very strong, observed constraint on the non-Gaussianity of 

global SST variability. The constraint is that the kurtosis is everywhere equal or larger 

than one-and-a-half times the squared skewness: kurt ! 3
2

   skew
2 . As there is, to our 

knowledge, no obvious dynamical reason why SST variability should behave this way, 

the observational result itself is astonishing. We note that we are not the first 

investigators to observe such a constraint. Burgers and Stephenson (1999) observed for 

ENSO region SST anomalies that “kurtosis is positively correlated with the square of 

skewness” without discussing the dynamical implications. We think, however, that this is 

the first time that the relation of kurtosis versus skewness of SST anomalies has been 

shown globally and, more important, that a detailed dynamical explanation has been 

provided. The agreement between observations and our simple theory tells us that a 

univariate linear model with multiplicative noise captures the observed non-Gaussianity 
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of SST anomalies almost all over the globe. This is consistent with a local study by Sura 

et al. (2006), which shows in detail that the non-Gaussianity at several OWS is captured 

by a multiplicative noise model. The bottom line is that a comprehensive (including 

multiplicative noise) stochastic approximation of the general mixed-layer SST equation is 

an excellent globally applicable model of anomalous SST variability.  

Beside the dynamical clarification, why is it useful to know the observed relation 

between skewness and kurtosis of SST anomalies?  First, it is useful as a benchmark for 

ocean models. Do ocean models simulate the correct non-Gaussian SST variability? An 

accurate representation of the non-Gaussian tails of SST distributions (extreme SST 

events) is crucial in the modeling and prediction of many important weather and climate 

phenomena, such as hurricanes, ENSO, NAO, etc. It is part of our current research to 

study if ocean models reproduce the observed relation between skewness and kurtosis for 

the correct physical reasons. To do so, we are planning to estimate the parameters of our 

stochastic mixed-layer model (6) from observations and model runs. A detailed 

comparison of observed and modeled parameters might reveal model deficiencies and 

could guide model development. Second, the equation kurt ! 3
2

   skew
2  is basically a 

forecasting tool for extreme SST anomalies. As we have discussed, kurtosis is a measure 

of how likely a non-Gaussian extreme event is. We have also seen that it is much easier 

to significantly estimate skewness from time series than kurtosis. That means, if we know 

the skewness of SST anomalies at a certain location, we can calculate the lower threshold 

of the expected kurtosis and, thereby, the likelihood of extreme anomalies for that 

location. Thus, our analysis of non-Gaussian SST statistics not only reveals some basic 
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mechanisms of global SST variability, but should help constrain the likelihood of 

extreme SST anomalies in a forecasting environment. 

 Last but not least, we would like to stress the more general aspect of our analysis. 

Weather and climate risk assessment is about understanding the tails (extreme events) of 

probability density functions.  We have shown that it is possible to develop stochastic 

models from first physical principles, which are capable of reproducing the observed 

statistics of extreme events. We, therefore, believe that sophisticated stochastic models 

(e.g., with multiplicative noise) are essential to model and understand extreme events in 

weather and climate, and hope that this paper may serve as an example how to combine 

observations with advanced theory to gain a better understanding of weather/climate 

related risk.               
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Figure Captions 

 

Fig. 1: Skewness of SST anomalies for extended summer (upper panel) and winter (lower 

panel). 

 

Fig. 2: Kurtosis of SST anomalies for extended summer (upper panel) and winter (lower 

panel). 

 

Fig. 3: Scatter plot of kurtosis versus skewness for all data points equatorward of 65° 

North and South. Here we have not made any distinction between extended summer and 

winter, but plotted all available points. The solid line denotes the function 

kurt = 3
2

   skew
2 . The estimated local 95% confidence intervals on the values are 

indicated in the upper right corner of the figure. 
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Fig. 1: Skewness of SST anomalies for extended summer (upper panel) and winter (lower panel). 
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Fig. 2: Kurtosis of SST anomalies for extended summer (upper panel) and winter (lower panel). 
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Fig. 3: Scatter plot of kurtosis versus skewness for all data points equatorward of 65° 

North and South. Here we have not made any distinction between extended summer and 

winter, but plotted all available points. The solid line denotes the function 

kurt = 3
2

   skew
2 . The estimated local 95% confidence intervals on the values are 

indicated in the upper right corner of the figure. 


